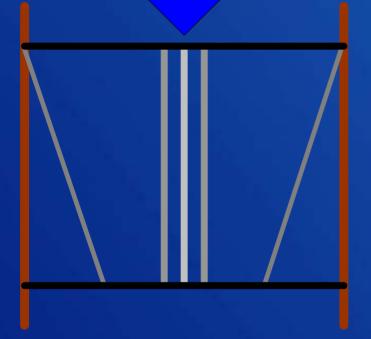
RECLANATION Managing Water in the West

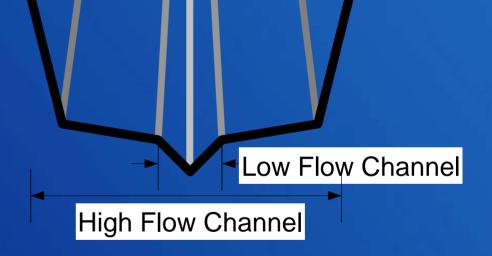
Rock Ramp Design Guidelines

David Mooney MS Chris Holmquist-Johnson MS Drew Baird Ph.D. P.E. Kent Collins P.E.

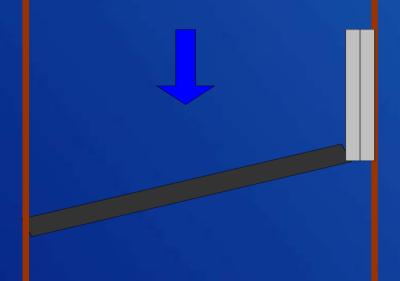
U.S. Department of the Interior Bureau of Reclamation

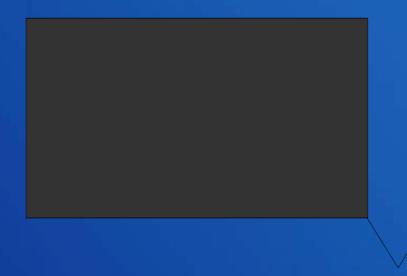
Rock Ramp Design Guidelines


OUTLINE


- Local and System Interactions with Rock Ramps
- Ramp Geometry and Hydraulics
- Riprap Design
- Fish Swimming Capabilities and Passage Criteria

ECLAMATI


- Design Event and Lifecycle Costs
- Boulder Clusters and Isolated Rocks
- Step Pools
- Future Guidelines Work
- Appendix A Basic Ramp Design Example


Ramp Geometry and Hydraulics Full Spanning Ramp

Partial Spanning Ramp

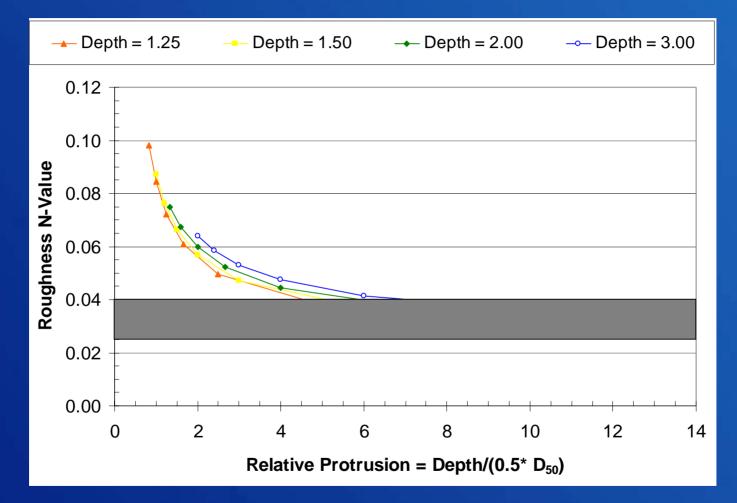
Rock Ramp Geometry Design Procedure

- Evaluate the appropriateness of a rock ramp including local and system interactions.
- Determine the biological fish passage criteria
- Estimate ramp geometric parameters and generate low flow hydraulics to meet fish passage requirements and project constraints. Includes iterating the slope and roughness.
- Determine the high flow design discharge.
- Iterate high flow geometry to provide adequate flood flow passage.
- Design entrance and exit transitions
- Biologic review to validate fish passage characteristics
- Add special features such as boulder clusters or step pools.
- Review the impact from special features on the basic design.

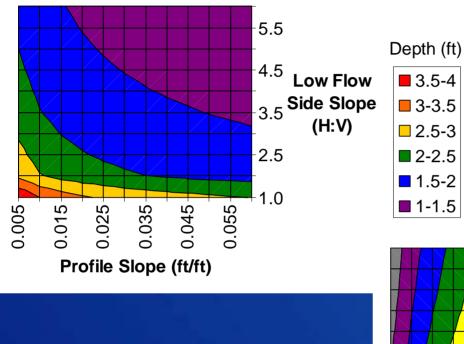
Local and System Interactions

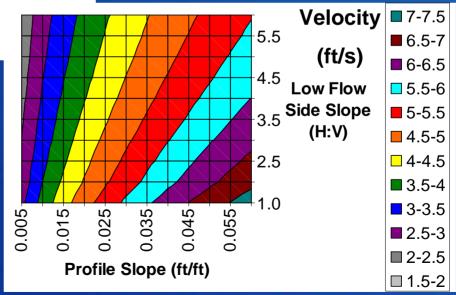
- Degradation
 - Local supply limited cases such as downstream of a dam
 - Downstream base level lowering
- Aggradation
 - rising sediment levels such as from changes in land use or debris flows
- Channel Migration
 - Past temporal and spatial rates of meander migration
 - River bends move laterally as well as translate downstream
 - Evaluate the effects of potentially altering channel migration patterns
 - Place structures in reaches where the potential channel migration is a minimum

- River migration may cause local flanking of a structure, determine countermeasures if necessary
- Structures can impede or accelerate migration processes.
- Construction Disturbances
- Geomorphic Thresholds (i.e. alter the water sediment relationship)


Steep Slope Roughness

- Abt et al. (1987) texted angular rock on steep slopes from 0.01 to 0.20. Rice et al. (1998) performed additional tests (slopes from 0.167, and 0.333).
- Rice et al. (1998) combined Apt et al. (1987) with their data to develop


$$n = 0.029 \cdot (D_{50} \cdot S_0)^{0.147}$$


- Where,
 - n = Manning's n-value;
 - D50 = median grain diameter of the riprap (mm); and
 - S_o = slope of the rock ramp.
- Individual stones extending above the rock ramp surface will increase the potential of rock dislodgement

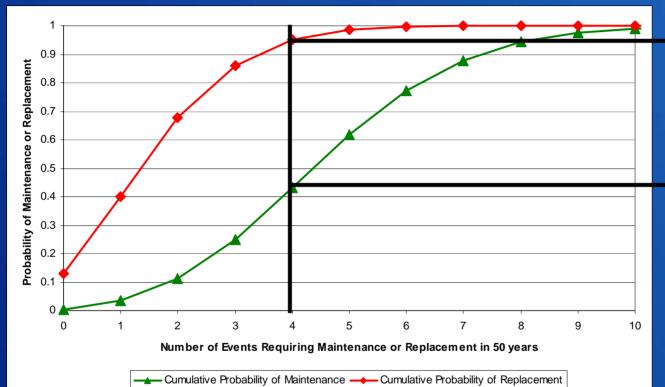
Depth Based Roughness (Darcy-Weisbach)

Low Flow Geometry and Hydraulics

Riprap Design Methods

- Sizing Methods Account for Overtopping Flow
 - Abt and Johnson (1991), Ullman (2000), Ferro (1999), Robinson et al. (1998), USACE (1991), Whittaker and Jaggi (1986), Stevenson (1979), and more.
- Gradation
 - D₁₀₀ < 2 * D₅₀
 - 1.25 < D₆₀ / D₁₀ < 2.4
- Filter Criteria
- Upstream and Downstream Transitions
 - Cutoff Wall
 - Downstream Scour Protection

Design Flow and Lifecycle Costs

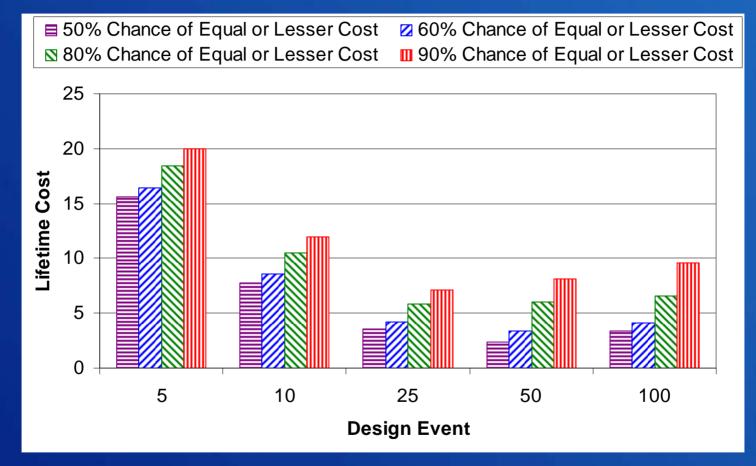

- Selection of a design event balances the cost of initial construction versus the cost, effort, and probability of replacing or repairing weaker structures if larger flow event occurs.
- Design Flow's Determined by
 - Regulatory Requirements
 - Land owner Requirements
 - Stake holder Requirements
 - Economics
 - Management Decision
- The methods do not account for lost delivery opportunities and assume all structures are maintained when required.

Fish Swimming Capabilities

Literature review of fish capabilities

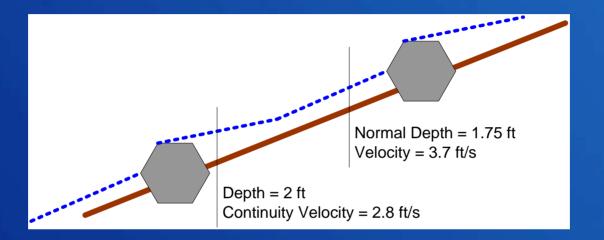
- swimming speeds including sustained, prolonged, and burst
- Leaping capabilities
- Life stage specific criteria
- State and Federal fish passage criteria
- Example installations of "nature-like" fishways
- Biological criteria planning processes

Replacement and Maintenance Frequency


Less than a 95% chance we must replace a structure more than 4 times

Less than a 50% chance (less certain) that we must repair a structure more than 4 times

RECLAMATIC


Frequencies indicate the likelihood of no more than a given amount.

Design Flow Event

Site specific lifecycle costs for different design events

Boulder Cluster Additions

- Cluster sizing, layout, and spacing
- Hydraulic Impacts
- Ramp Interactions
- Construction concerns

Step-Pool Additions

- Range of applicability
- Hydraulics Parameters
 - Step height
 - Step frequency
- Design Parameters
 - Rock size
 - Scour pool dimension
- Rock ramp interaction

Guidelines Software

- An analysis software package can facilitate detailed computations
 - Low flow hydraulics require iterative computations
 - Riprap design uses multiple equations
 - Lifecycle costs requires iterative calculations
- Charts and graphical displays assist in conveying information to support decision making
- Validated software standardizes methods